Author: Feng, C.
Paper Title Page
Eliminating the Microbunching-Instability-Induced Sideband in a Soft X-Ray Self-Seeding Free-Electron Laser  
  • K.Q. Zhang, C. Feng, D. Wang
    SINAP, Shanghai, People's Republic of China
  Soft x-ray self-seeding has been proved to be a feasible method to improve the longitudinal coherence of high gain free-electron laser. However, a pedestal-like sideband in the spectrum has been observed in the experiment, which generally limits the purity of the radiation pulse and the user's application. The previous theoretical study indicates that the pedestal-like sideband is mainly induced by microbunching instability generated from LINAC. In this paper, three dimensional simulations have been performed to confirm the analytical results and show the formation process of the spectral sideband. A probable method is proposed to eliminate the pedestal-like sideband by simply inserting a magnetic chicane before the self-seeding FEL undulator. Theoretical and numerical simulations have been performed and the results show that the proposed method can efficiently eliminate the microbunching-instability-induced sideband in a soft x-ray self-seeding FEL  
slides icon Slides THA1WA02 [8.258 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THP2WB02 An Overview of the Progress on SSMB 166
  • C.-X. Tang, X.J. Deng, W.-H. Huang, T. Rui
    TUB, Beijing, People's Republic of China
  • A. Chao, D.F. Ratner
    SLAC, Menlo Park, California, USA
  • J. Feikes, J. Li, M. Ries
    HZB, Berlin, Germany
  • C. Feng, B.C. Jiang, X.F. Wang
    SINAP, Shanghai, People's Republic of China
  • E. Granados
    MIT, Cambridge, Massachusetts, USA
  • A. Hoehl
    PTB, Berlin, Germany
  Steady State Microbunching (SSMB) is an electron stor- age ring based scheme proposed by Ratner and Chao to generate high average power coherent radiation and is one of the promising candidates to address the need of kW level EUV source for lithography. After the idea of SSMB was put forward, it has attracted much attention. Recently, with the promote of Chao, in collaboration with colleagues from other institutes, a SSMB task force has been established in Tsinghua University. The experimental proof of the SSMB principle and a feasible lattice design for EUV SSMB are the two main tasks at this moment. SSMB related physics for the formation and maintenance of microbunches will be explored in the first optical proof-of-principle experiment at the MLS storage ring in Berlin. For EUV SSMB lattice design, longitudinal strong focusing and reversible seeding are the two schemes on which the team focuses. The pro- gresses made as well as some challenges from physical and technological aspects for EUV SSMB will be presented in this paper.
on behalf of the SSMB team: C. Tang, Alex Chao, X. Deng, W. Huang, and T. Rui of THU; D. Ratner of SLAC; J. Feikes and M. Ries of Helmholtz-Zentrum Berlin; C. Feng, B. Jiang, and X. Wang of SINAP
slides icon Slides THP2WB02 [7.924 MB]  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)