Author: Ruprecht, R.
Paper Title Page
Design of a Very Large Acceptance Compact Storage Ring  
  • A.I. Papash, E. Bründermann, A.-S. Müller, R. Ruprecht, M. Schuh
    KIT, Karlsruhe, Germany
  Design of a very large acceptance compact storage ring is underway at the Institute for Beam Physics and Technology of the Karlsruhe Institute of Technology (Germany). Combination of storage ring and a laser wake-field accelerator (LWFA) might be the basis for future compact light sources and advancing user facilities. Meanwhile the post-LWFA beam is not fitted for storage and accumulation in conventional storage rings. New generation rings with adapted features are required. Different geometries and lattices of a ring operating between 50 to 500 MeV energy range were investigated. The model suitable to store the post-LWFA beam with a wide momentum spread (2% to 3%) and ultra-short electron bunches of fs range was chosen as basis for further detailed studies. The DBA-FDF lattice with relaxed settings, split elements and high order optics of tolerable strength allows to improve the dynamic aperture up to 20 mm. The momentum acceptance of compact lattice exceeds 8% while dispersion is limited. The physical program includes turn-by-turn phase compression of a beam, crab cavities, dedicated alpha optics mode of operation, non-linear insertion devices etc.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)