Keyword: dipole
Paper Title Other Keywords Page
TUA2WB02 Multi-Bend Lattice Analysis Towards a Diffraction Limited Ring Based Light Source ion, lattice, emittance, insertion 28
  • E. Karantzoulis
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  An analysis of lattice configurations up to 10 bend achromat is presented aiming towards diffraction limited ring based light source. The described analysis can apply to any type of a ring based light source however for practical reasons we consider Elettra that has been operating for users for 24 years; to stay competitive for world-class photon science in the future a massive upgrade of the storage ring is needed. The optimum solution is based on certain design criteria, constraints regarding certain accelerator components and their implications on beam dynamics and user requirements. The space available for insertion devices as well as the impact of anti-bends on the design is also addressed. Two proposed realistic lattices are further discussed taking into account different criteria and user requirements. Those lattices reduce the emittance of the present machine by more than one order of magnitude but at the same time respect many other criteria such as realistic magnet gradients, magnets with magnetic length equal to the physical length, drift space enough for radiation extraction, large available space for insertion devices, minimal shift of the beam lines etc.  
slides icon Slides TUA2WB02 [12.781 MB]  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEP2PT014 Strong Focusing Lattice Design for SSMB ion, lattice, photon, electron 113
  • T. Rui, X.J. Deng, W.-H. Huang, C.-X. Tang
    TUB, Beijing, People's Republic of China
  • A. Chao
    SLAC, Menlo Park, California, USA
  A storage ring applicable for SSMB operation is a critical part of a high average power SSMB EUV light source. A lattice for SSMB based on longitudinal strong focusing is under design in Tsinghua University. To generate and maintain micro-bunching in a storage ring in this scenario, the momentum compaction has to be small. A lattice with low momentum compaction factor is presented in this work. The lattice of the current design consists of two MBA cells with isochronous unit cells to minimize local and global momentum compaction, and two straight sections for insertion devices. The design energy of the ring is 400MeV and the circumference is 94 meters. Nonlinear effects such as higher order momentum compactions will continue to be optimized.  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THA1WC01 Compact Arc Compressor for FEL-Driven Compton Light Source and ERL-Driven UV FEL ion, FEL, emittance, electron 183
  • S. Di Mitri
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • J.A.G. Akkermans, I. Setija
    ASML Netherlands B.V., Veldhoven, The Netherlands
  • D. Douglas
    JLab, Newport News, Virginia, USA
  • C. Pellegrini
    SLAC, Menlo Park, California, USA
  • G. Penn, M. Placidi
    LBNL, Berkeley, California, USA
  Many research and applications areas require photon sources capable of producing extreme ultra-violet (EUV) to gamma-ray beams with reasonably high fluxes and compact footprints. We explore the feasibility of a compact energy-recovery linac EUV free electron laser (FEL)*, and of a multi-MeV gamma-rays source based on inverse Compton scattering from a high intensity UV FEL emitted by the electron beam itself. In the latter scenario, the same electron beam is used to produce gamma-rays in the 10-20 MeV range and UV radiation in the 1015 eV range, in a ~4x22 m2 footprint system.**
* J.Akkermans, S.Di Mitri, D.Douglas, I.Setija, PRAB 20, 080705 (2017).
** M. Placidi, S. Di Mitri,⁎, C. Pellegrini, G. Penn, NIM A 855 (2017) 55-60.
slides icon Slides THA1WC01 [5.258 MB]  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)