Keyword: synchrotron
Paper Title Other Keywords Page
TUP2WD03 Turn-by-Turn Measurements for Systematic Investigations of the Micro-Bunching Instability ion, detector, radiation, diagnostics 46
  • J.L. Steinmann, M. Brosi, E. Bründermann, M. Caselle, S. Funkner, B. Kehrer, A.-S. Müller, M.J. Nasse, G. Niehues, L. Rota, M. Schuh, P. Schönfeldt, M. Siegel, M. Weber
    KIT, Karlsruhe, Germany
  Funding: Funded by the German Federal Ministry of Education and Research (Grant No. 05K16VKA) & Initiative and Networking Fund of the Helmholtz Association (contract number: VH-NG-320).
While recent diffraction-limited storage rings provide bunches with transverse dimensions smaller than the wavelength of the observed synchrotron radiation, the bunch compression in the longitudinal plane is still challenging. The benefit would be single cycle pulses of coherent radiation with many orders of magnitude higher intensity. However, the self-interaction of a short electron bunch with its emitted coherent radiation can lead to micro-bunching instabilities. This effect limits the bunch compression in storage rings currently to the picosecond range. In that range, the bunches emit coherent THz radiation corresponding to their bunch length. In this paper, new measurement setups developed at the Karlsruhe Institute of Technology are described for systematic turn-by-turn investigations of the micro-bunching instability. They lead to a better understanding thereof and enable appropriate observation methods in future efforts of controlling and mastering the instability. Furthermore, the described setups might also be used as high repetition rate bunch compression monitors for bunches of picosecond length and below.
slides icon Slides TUP2WD03 [8.524 MB]  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEP2PT030 Undulator Development Activities at DAVV-Indore undulator, ion, radiation, synchrotron-radiation 133
  • M. Gehlot, R. Khullar, G. Mishra
    Devi Ahilya University, Indore, India
  • H. Jeevakhan
    NITTTR, Bhopal, India
  • G. Sharma
    RI Research Instruments GmbH, Bergisch Gladbach, Germany
  Insertion Device Design Laboratory, DAVV has development activities on in-house design, fabrication and measurement of prototype undulators for synchrotron radiation and free electron laser application. The first prototype U50 was built with six periods, 50mm each period. It was PPM type. The next prototype U20 hybrid device based on NdFeB-Cobalt steel was built with aim to produce 0.24T to 0.05T in 10-20mm gap. The undulator is a 20mm period and there are 25 periods. The next one is U50-II PPM structure with 20 periods. In this paper we review the designs of all these undulators and briefly outline the user facilities of Hall probe bench, Pulsed wire bench and stretched wire magnetic measurement systems at IDDL.  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)